The Electron Density Assimilative Model (EDAM)

Matthew Angling
Background

- Electron Density Assimilative Model (EDAM)
 - Data assimilation model
 - Produces 3D electron density grids
 - Developed at QinetiQ Ltd (UK) with funding from the UK MOD Science and Technology programme
 - To provide a high accuracy and timely specification of the ionosphere for use in radio systems
 - Space track radar, space based radar, single frequency GNSS, HF systems
Starting point: can be either a climatological model or a physics based model

Rigorous mathematical approach

Data Assimilation
Room temperature:
Random variable T, mean $<T>$, variance σ^2

Thermometer measurement, T_o
mean $<T>$, variance σ_o^2

Background information provided by thermostat setting, T_b
mean $<T>$, variance σ_b^2
Best linear unbiased estimator (BLUE)

\[T_a = T_b + \left(\frac{\sigma_b^2}{\sigma_b^2 + \sigma_o^2} \right) \times (T_o - T_b) \]
Extension to vectors

- Variances are replaced with error covariance matrices
 - Diagonal values contain the variance of the errors
 - Off diagonal terms contain the covariances between the errors associated with different elements of the data vectors.
- Generally variables are not directly observed. Observations \(y \) are related to variables by an observation operator: \(y = Hx + \varepsilon \)

\[
\begin{align*}
x_a &= x_b + K(y - Hx_b) \\
K &= BH^T (HBH^T + R)^{-1}
\end{align*}
\]

- \(x_a \) = most probable atmospheric state
- \(x_b \) = a priori (background) atmospheric model
- \(y \) = observations
- \(B \) = background error covariance matrix
- \(H \) = Observation operator
- \(R \) = observation error covariance matrix
- \(K \) = weight matrix
Effects of varying background errors

Truth electron density

Analysis
<table>
<thead>
<tr>
<th>LT persistence forecast</th>
<th>Model</th>
<th>Representation</th>
<th>Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT persistence forecast</td>
<td>Empirical • IRI • RIBG • PIM</td>
<td>Shells • Single • Multiple 3D basis functions • Horiz harmonics • Vertical EOFs 3D grid • Geographic • Geomagnetic</td>
<td>Non-optimal • Profile adjustment • Tomography • ART, MART, etc</td>
</tr>
<tr>
<td>Physical forecast</td>
<td>Physical • Ionospheric • Coupled</td>
<td></td>
<td>Optimal • DIT • GMKF • Approx Kalman • Full Kalman • Variational methods</td>
</tr>
</tbody>
</table>

No covariances

No covariances
<table>
<thead>
<tr>
<th>Model</th>
<th>Representation</th>
<th>Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT persistence</td>
<td>Empirical</td>
<td>Non-optimal</td>
</tr>
<tr>
<td>Forecast</td>
<td>• IRI</td>
<td>• Profile adjustment</td>
</tr>
<tr>
<td></td>
<td>• RIBG</td>
<td>• Tomography</td>
</tr>
<tr>
<td></td>
<td>• PIM</td>
<td>• ART, MART, etc</td>
</tr>
<tr>
<td></td>
<td>Physical</td>
<td>Optimal</td>
</tr>
<tr>
<td></td>
<td>• Ionospheric</td>
<td>• DIT</td>
</tr>
<tr>
<td></td>
<td>• Coupled</td>
<td>• GMKF</td>
</tr>
<tr>
<td></td>
<td>Physical</td>
<td>• Approx Kalman</td>
</tr>
<tr>
<td></td>
<td>forecast</td>
<td>• Full Kalman</td>
</tr>
<tr>
<td></td>
<td>• Geographic</td>
<td>• Variational methods</td>
</tr>
<tr>
<td></td>
<td>• Geomagnetic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3D basis functions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Horiz harmonics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3D grid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vertical EOFs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Geographic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Geomagnetic</td>
<td></td>
</tr>
</tbody>
</table>
Electron Density Assimilative Model (EDAM)

- International Reference Ionosphere used for background model
 - Electrons only
- Designed to be scalable
 - Can assimilate single or multiple measurements
- Low demands on computer resources
- Simple evolution
 - Exponential decay of electron density grid differences
- Uses sun-fixed geomagnetic coordinate system
- Model Variances are propagated, covariance are estimated as required
Data assimilation allows the use of a wide range of data types:
- Vertical, oblique and backscatter ionosondes
- In-situ measurements of electron density
- Extreme ultra-violet measurements
- Total electron content from GPS
- Ground or space based
Digisonde and GPS locations
October 2003 – background model
October 2003 - EDAM
Testing methods

- Against independent data
 - Vertical ionograms, radio occultation data etc
- Against independent models
 - GAIM (Utah State University)
 - GPSII (NWRA)
 - TIE-CGM (NCAR)
 - GTIM (U of Michigan)

EDAM in ESPAS
EDAM in ESPAS
EDAM in ESPAS – map output

QinetiQ

EDAM v1.2.07 NmF2 30/09/2015 11:45:00 UT

UNIVERSITY OF BIRMINGHAM

Generated by EMMENTAL on 30/09/2015 12:50:31 UT
<table>
<thead>
<tr>
<th>EONEX VERSION / TYPE</th>
<th>PGM / RUN BY / DATE</th>
<th>DESCRIPTION</th>
<th>DESCRIPTION</th>
<th>DESCRIPTION</th>
<th>COMMENT</th>
<th>EPOCH OF FIRST MAP</th>
<th>EPOCH OF LAST MAP</th>
<th>INTERVAL</th>
<th># OF MAPS IN FILE</th>
<th>ELEVATION CUTOFF</th>
<th>OBSERVABLES CUTOFF</th>
<th># OF STATIONS</th>
<th># OF SATELLITES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Data stored as log(Ne)</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>9</td>
<td>30</td>
<td>11</td>
<td>45</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>9</td>
<td>30</td>
<td>11</td>
<td>45</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One-way carrier phase leveled to code</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6371.0</td>
<td>3</td>
<td>100</td>
<td>46</td>
<td>90</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>90.00</td>
<td>95.00</td>
<td>100.00</td>
<td>105.00</td>
<td>110.00</td>
<td>115.00</td>
<td>120.00</td>
<td>125.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130.00</td>
<td>135.00</td>
<td>140.00</td>
<td>150.00</td>
<td>160.00</td>
<td>170.00</td>
<td>180.00</td>
<td>190.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.00</td>
<td>210.00</td>
<td>220.00</td>
<td>230.00</td>
<td>240.00</td>
<td>250.00</td>
<td>260.00</td>
<td>270.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280.00</td>
<td>290.00</td>
<td>300.00</td>
<td>310.00</td>
<td>320.00</td>
<td>330.00</td>
<td>340.00</td>
<td>350.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>360.00</td>
<td>370.00</td>
<td>380.00</td>
<td>390.00</td>
<td>400.00</td>
<td>410.00</td>
<td>420.00</td>
<td>430.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440.00</td>
<td>460.00</td>
<td>480.00</td>
<td>500.00</td>
<td>520.00</td>
<td>540.00</td>
<td>560.00</td>
<td>580.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600.00</td>
<td>620.00</td>
<td>640.00</td>
<td>660.00</td>
<td>680.00</td>
<td>700.00</td>
<td>720.00</td>
<td>740.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>760.00</td>
<td>780.00</td>
<td>800.00</td>
<td>820.00</td>
<td>840.00</td>
<td>860.00</td>
<td>880.00</td>
<td>900.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>920.00</td>
<td>940.00</td>
<td>960.00</td>
<td>980.00</td>
<td>1000.00</td>
<td>1020.00</td>
<td>1040.00</td>
<td>1060.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metres Above Sea Level</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>90.00 95.00 100.00 105.00 110.00 115.00 120.00 125.00</td>
<td></td>
</tr>
<tr>
<td>130.00 135.00 140.00 150.00 160.00 170.00 180.00 190.00</td>
<td></td>
</tr>
<tr>
<td>200.00 210.00 220.00 230.00 240.00 250.00 260.00 270.00</td>
<td></td>
</tr>
<tr>
<td>280.00 290.00 300.00 310.00 320.00 330.00 340.00 350.00</td>
<td></td>
</tr>
<tr>
<td>360.00 370.00 380.00 390.00 400.00 410.00 420.00 430.00</td>
<td></td>
</tr>
<tr>
<td>440.00 460.00 480.00 500.00 520.00 540.00 560.00 580.00</td>
<td></td>
</tr>
<tr>
<td>600.00 620.00 640.00 660.00 680.00 700.00 720.00 740.00</td>
<td></td>
</tr>
<tr>
<td>760.00 780.00 800.00 820.00 840.00 860.00 880.00 900.00</td>
<td></td>
</tr>
<tr>
<td>920.00 940.00 960.00 980.00 1000.00 1020.00 1040.00 1060.00</td>
<td></td>
</tr>
<tr>
<td>1080.00 1100.00 1120.00 1140.00 1160.00 1180.00 1200.00 1220.00</td>
<td></td>
</tr>
<tr>
<td>1240.00 1260.00 1280.00 1300.00 1320.00 1340.00 1360.00 1380.00</td>
<td></td>
</tr>
<tr>
<td>1400.00 1420.00 1440.00 1460.00 1480.00 1500.00 1520.00 1540.00</td>
<td></td>
</tr>
<tr>
<td>1560.00 1580.00 1600.00 1620.00</td>
<td></td>
</tr>
</tbody>
</table>

END OF HEIGHT GRID

<table>
<thead>
<tr>
<th>Degrees North of Prime Meridian</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
<tr>
<td>46</td>
</tr>
<tr>
<td>-90.00 -86.00 -82.00 -78.00 -74.00 -70.00 -66.00 -62.00 -58.00 -54.00 -50.00</td>
</tr>
<tr>
<td>-46.00 -42.00 -38.00 -34.00 -30.00 -26.00 -22.00 -18.00 -14.00 -10.00 -6.00</td>
</tr>
<tr>
<td>-2.00 2.00 6.00 10.00 14.00 18.00 22.00 26.00 30.00 34.00 38.00</td>
</tr>
<tr>
<td>42.00 46.00 50.00 54.00 58.00 62.00 66.00 70.00 74.00 78.00 82.00</td>
</tr>
<tr>
<td>86.00 90.00</td>
</tr>
<tr>
<td>46</td>
</tr>
<tr>
<td>90</td>
</tr>
</tbody>
</table>

END OF LAT GRID

<table>
<thead>
<tr>
<th>Degrees East of Greenwich</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>44.00 48.00 52.00 56.00 60.00 64.00 68.00 72.00 76.00 80.00 84.00</td>
</tr>
<tr>
<td>88.00 92.00 96.00 100.00 104.00 108.00 112.00 116.00 120.00 124.00 128.00</td>
</tr>
<tr>
<td>132.00 136.00 140.00 144.00 148.00 152.00 156.00 160.00 164.00 168.00 172.00</td>
</tr>
<tr>
<td>176.00 180.00 184.00 188.00 192.00 196.00 200.00 204.00 208.00 212.00 216.00</td>
</tr>
<tr>
<td>220.00 224.00 228.00 232.00 236.00 240.00 244.00 248.00 252.00 256.00 260.00</td>
</tr>
<tr>
<td>264.00 268.00 272.00 276.00 280.00 284.00 288.00 292.00 296.00 300.00 304.00</td>
</tr>
<tr>
<td>308.00 312.00 316.00 320.00 324.00 328.00 332.00 336.00 340.00 344.00 348.00</td>
</tr>
<tr>
<td>352.00 356.00</td>
</tr>
</tbody>
</table>

END OF LON GRID

Length: 3324892 lines: 45601 Ln: 14 Col: 37 Sel: 0 | 0 Dos/Windows UTF-8 w/o BOM INS
<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Day</th>
<th>Hour</th>
<th>Minute</th>
<th>Second</th>
<th>Latitude (Degrees)</th>
<th>Longitude (Degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>9</td>
<td>30</td>
<td>11</td>
<td>45</td>
<td>0</td>
<td>8.673</td>
<td>9.525</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.163</td>
<td>10.407</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.386</td>
<td>10.293</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.114</td>
<td>9.925</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.763</td>
<td>9.679</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.672</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-90.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>10</td>
<td>20</td>
<td>12</td>
<td>45</td>
<td>0</td>
<td>9.829</td>
<td>10.064</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.252</td>
<td>10.443</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.624</td>
<td>10.797</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.965</td>
<td>11.112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.231</td>
<td>11.321</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.394</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-90.0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>11</td>
<td>30</td>
<td>11</td>
<td>45</td>
<td>0</td>
<td>11.442</td>
<td>11.472</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.483</td>
<td>11.483</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.474</td>
<td>11.463</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.447</td>
<td>11.429</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.406</td>
<td>11.381</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.353</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-90.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>12</td>
<td>31</td>
<td>12</td>
<td>45</td>
<td>0</td>
<td>10.884</td>
<td>10.829</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.777</td>
<td>10.777</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.679</td>
<td>10.634</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.592</td>
<td>10.551</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.512</td>
<td>10.475</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.437</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-90.0</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Electron Density Assimilative Model (EDAM)
 - Data assimilation model developed at QinetiQ in the UK
 - Runs in near real time
 - Routinely assimilates ionosondes and GPS-TEC
 - Provides 3D grids into ESPAS